Preview

Bulletin of Reproductive Health

Advanced search

Vliyanie estrogenov na TsNS

https://doi.org/10.14341/brh20083-425-28

Abstract

Эстрогены в организме женщины контролируют развитие половых органов, участвуют в становлении функциональной активности гипоталамо-гипофизарно-гонадной системы и обеспечивают репродуктивную функцию. Кроме того, они выполняют такие«нерепродуктивные» функции, как обеспечение развития и дифференцировки клеток мозга на различных этапах онтогенеза, влияние на нейроэндокринную регуляцию обменных процессов и регенераторных и пластических процессов в центральной нервной системе (ЦНС), обеспечение формирования поведенческих, психологических и половых реакций. Эстрогены оказывают важное защитное действие на ЦНС: замедляют процессы апоптоза клеток ЦНС и повышают их выживаемость в условиях гипоксии, гипогликемии и интоксикации. Половые стероиды участвуют в формировании когнитивных функций, уменьшают клинические проявления депрессии и других психических расстройств. Понимание влияния эстрогенов на развитие и функционирование ЦНС в различные периоды жизни женщин чрезвычайно важно для выбора тактики лечения различных дисгормональных нарушений у женщин и определения показаний и противопоказаний к применению гормональных или антигормональных препаратов.

References

1. Bodo C., Rissman E.F. New roles for estrogen receptor beta in behavior and neuroendocrinology. Front Neuroendocrinol 2006;27 (2): 217–232.

2. Matthews J., Gustafsson J.A. Estrogen Signaling: A Subtle Balance Between ER and ER Molecular Interventions 2003; 3: 281–292.

3. Gonzalez M., Reyes R., Damas C. et al. Oestrogen receptor alpha and beta in female rat pituitary cells: an immunochemical study Gen Comp Endocrinol 2008; 155 (3): 857–868.

4. Boulware M.I., Mermelstein P.G. The influence of estradiol on nervous system function. Drug News Perspect 2005; 18 (10): 631–637.

5. Duckles S.P., Krause D.N. Cerebrovascular effects of oestrogen: multiplicity of action. Clin Exp Pharmacol Physiol 2007;34 (8): 801–808.

6. Hu L., Gustofson R.L., Feng H. et al. Converse regulatory functions of estrogen receptor-alpha and -beta subtypes expressed in hypothalamic gonadotropin-releasing hormone neurons. Mol Endocrinol 2008; 22 (10): 2250–2259.

7. Pfaff D.W., Vasudevan N., Kia H.K. et al. Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women’s health. J Steroid Biochem Mol Biol 2000; 74 (5): 365–373.

8. Weiser M.J., Foradori C.D., Handa R.J. Estrogen receptor beta in the brain: from form to function. Brain Res Rev 2008; 57 (2): 309–320.

9. Miller W.J., Suzuki S., Miller L.K. et al. Estrogen receptor (ER)beta isoforms rather than ERalpha regulate corticotropinreleasing hormone promoter activity through an alternate pathway. J Neurosci 2004; 24 (47): 10 628–10 635.

10. Sladek C.D., Somponpun S.J. Estrogen receptors: their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis. Front Neuroendocrinol 2008; 29 (1): 114– 127.

11. Nomura M., Korach K.S., Pfaff D.W., Ogawa S. Estrogen receptor beta (ERbeta) protein levels in neurons depend on estrogen receptor alpha (ERalpha) gene expression and on its ligand in a brain region-specific manner. Brain Res Mol Brain Res 2003; 110 (1): 7–14.

12. Ishunina T.A., Swaab D.F. Estrogen receptor-alpha splice variants in the human brain. Gynecol Endocrinol 2008; 24 (2): 93– 98.

13. Grans H., Nilsson M., Dahlman-Wright K., Evengard B. Reduced levels of oestrogen receptor {beta} mRNA in Swedish patients with chronic fatigue syndrome. J Clin Pathol 2007; 60 (2): 195–198.

14. Beyer C. Estrogen and the developing mammalian brain. Anat Embryol 1999; 199: (5): 379–390.

15. Ivanova T., Karolczak M., Beyer C. Estradiol stimulates GDNF expression in developing hypothalamic neurons. Endocrinology 2002; 143 (8): 3175–3178.

16. Федотова Ю.О., Сапронов Н.С. Эффекты эстрогенов в центральной нервной системе. Успехи физиол наук 2007; 38: (2): 46–62.

17. Toran-Allerand C.D., Singh M., Setalo G. Jr. Novel mechanisms of estrogen action in the brain: new platers in an old story. Front Neuroendocrinol 1999; 20 (2): 97–121.

18. Galea L.A., Uban K.A., Epp J.R. et al. Endocrine regulation of cognition and neuroplasticity: Our pursuit to unveil the complex interaction between hormones, the brain, and behavior. Can J Exp Psychol 2008; 62 (4): 247–260.

19. Mitsiades N., Correa D., Gross C.P. et al. Cognitive effects of hormonal therapy in older adults. Semin Oncol 2008; 35 (6): 569–581.

20. Sherwin B.B., Henry J.F. Brain aging modulates the neuroprotective effects of estrogen on selective aspects of cognition in women: a critical review. Front Neuroendocrinol 2008;29 (1): 88–113.

21. Mor G., Nilsen J., Horvath T. et al. Estrogen and microglia: a regulatory system that affects the brain. J Neurobiol 1999; 40 (4): 484—496.

22. Roselli С.Е. Brain aromatase: roles in reproduction and neuroprotection. J Steroid Biochem Mol Biol 2007; 106 (1–5): 143– 150.

23. Bruce-Keller A.J., Keeling J.L., Keller J.N. et al. Antiinflammatory effects of estrogen on microglia activation. Endocrinology 2000; 141 3646–3456.

24. Verthelyi D. Female’s heightened immune status: estrogen, T cells, and inducible nitric oxide synthase in the balance. Endocrinology 2006; 147 (2): 659–661.

25. Xu H., Gouras G.K., Greenfield J.P. et al. Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med 1998; 4 (4): 447–451.

26. Benvenuti S., Luciani P., Vannelli G.B. et al. Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of selective Alzheimer’s disease indicator-1, a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures. J Clin Endocrinol Metab 2005; 906 (3): 1775–1782.

27. Peri A., Serio M. Estrogen receptor-mediated neuroprotection: The role of the Alzheimer’s disease-related gene seladin-1. Neuropsychiatr Dis Treat 2008; 4 (4): 817–824.

28. Luciani P., Deledda C., Rosati F. et al. Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures. Endocrinology 2008;149 (9): 4256–4266.

29. Behl C. Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 1999; 57 (3): 301–323.

30. Nilsen J. Estradiol and neurodegenerative oxidative stress. Front Neuroendocrinol 2008; 29 (4): 463–475.

31. Lethaby A., Hogervorst E., Richards M. еt al. Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Syst Rev 2008; 1: 3122.

32. Ishunina T.A., van Beurden D., van der Meulen G. et al. Diminished aromatase immunoreactivity in the hypothalamus, but not in the basal forebrain nuclei in Alzheimer’s disease. Neurobiol Aging 2005; 26: 173–194.

33. Pae C.U., Mandelli L., Han C. et al. Do estradiol levels influence on the cognitive function during antidepressant treatments in post-menopausal women with major depressive disorder? A comparison with pre-menopausal women. Neuro Endocrinol Lett 2008; 29 (4): 500–506.

34. Pandaranandaka J., Poonyachoti S., KalandakanondThongsong S. Differential effects of exogenous and endogenous estrogen on anxiety as measured by elevated T-maze in relation to the serotonergic system. Behav Brain Res 2009 Mar 2;198(1):1428. Epub 2008 Nov 12

35. Compton J., van Amelsvoort T., Murphy D. Mood, cognition and Alzheimer’s disease. Best Pract Res Clin Obstet Gynaecol 2002; 16 (3): 357–370.

36. Sohrabji F. Premenopausal oophorectomy and the risk for dementia. Womens Health 2008; 4 (2): 127–131.


Review

For citations:


Ilovayskaya I.A., Mikhaylova D.S. Vliyanie estrogenov na TsNS. Bulletin of Reproductive Health. 2008;(3-4):25-28. (In Russ.) https://doi.org/10.14341/brh20083-425-28

Views: 2045


ISSN 2075-6569 (Print)
ISSN 2310-421X (Online)